Mitochondrial Cardiomyopathy Caused by Elevated Reactive Oxygen Species and Impaired Cardiomyocyte Proliferation.

نویسندگان

  • Donghui Zhang
  • Yifei Li
  • Danielle Heims-Waldron
  • Vassilios Bezzerides
  • Silvia Guatimosim
  • Yuxuan Guo
  • Fei Gu
  • Pingzhu Zhou
  • Zhiqiang Lin
  • Qing Ma
  • Jianming Liu
  • Da-Zhi Wang
  • William T Pu
چکیده

RATIONALE Although mitochondrial diseases often cause abnormal myocardial development, the mechanisms by which mitochondria influence heart growth and function are poorly understood. OBJECTIVE To investigate these disease mechanisms, we studied a genetic model of mitochondrial dysfunction caused by inactivation of Tfam (transcription factor A, mitochondrial), a nuclear-encoded gene that is essential for mitochondrial gene transcription and mitochondrial DNA replication. METHODS AND RESULTS Tfam inactivation by Nkx2.5Cre caused mitochondrial dysfunction and embryonic lethal myocardial hypoplasia. Tfam inactivation was accompanied by elevated production of reactive oxygen species (ROS) and reduced cardiomyocyte proliferation. Mosaic embryonic Tfam inactivation confirmed that the block to cardiomyocyte proliferation was cell autonomous. Transcriptional profiling by RNA-seq demonstrated the activation of the DNA damage pathway. Pharmacological inhibition of ROS or the DNA damage response pathway restored cardiomyocyte proliferation in cultured fetal cardiomyocytes. Neonatal Tfam inactivation by AAV9-cTnT-Cre caused progressive, lethal dilated cardiomyopathy. Remarkably, postnatal Tfam inactivation and disruption of mitochondrial function did not impair cardiomyocyte maturation. Rather, it elevated ROS production, activated the DNA damage response pathway, and decreased cardiomyocyte proliferation. We identified a transient window during the first postnatal week when inhibition of ROS or the DNA damage response pathway ameliorated the detrimental effect of Tfam inactivation. CONCLUSIONS Mitochondrial dysfunction caused by Tfam inactivation induced ROS production, activated the DNA damage response, and caused cardiomyocyte cell cycle arrest, ultimately resulting in lethal cardiomyopathy. Normal mitochondrial function was not required for cardiomyocyte maturation. Pharmacological inhibition of ROS or DNA damage response pathways is a potential strategy to prevent cardiac dysfunction caused by some forms of mitochondrial dysfunction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mitochondrial contagion induced by Parkin deficiency in Drosophila hearts and its containment by suppressing mitofusin.

RATIONALE Dysfunctional Parkin-mediated mitophagic culling of senescent or damaged mitochondria is a major pathological process underlying Parkinson disease and a potential genetic mechanism of cardiomyopathy. Despite epidemiological associations between Parkinson disease and heart failure, the role of Parkin and mitophagic quality control in maintaining normal cardiac homeostasis is poorly und...

متن کامل

Mitochondrial uncoupling downregulates calsequestrin expression and reduces SR Ca2+ stores in cardiomyocytes.

AIMS Mitochondrial cardiomyopathy is associated with deleterious remodelling of cardiomyocyte Ca(2+) signalling that is partly due to the suppressed expression of the sarcoplasmic reticulum (SR) Ca(2+) buffer calsequestrin (CASQ2). This study was aimed at determining whether CASQ2 downregulation is directly caused by impaired mitochondrial function. METHODS AND RESULTS Mitochondrial stress wa...

متن کامل

Cardiomyopathy Attenuation of Doxorubicin-Induced Cardiomyopathy by Endothelin-Converting Enzyme-1 Ablation Through Prevention of Mitochondrial Biogenesis Impairment

Doxorubicin is an effective antineoplastic drug; however, its clinical benefit is limited by its cardiotoxicity. The inhibition of mitochondrial biogenesis is responsible for the pathogenesis of doxorubicin-induced cardiomyopathy. Endothelin-1 is a vasoconstrictive peptide produced from big endothelin-1 by endothelin-converting enzyme-1 (ECE-1) and a multifunctional peptide. Although plasma end...

متن کامل

Attenuation of Doxorubicin-induced cardiomyopathy by endothelin-converting enzyme-1 ablation through prevention of mitochondrial biogenesis impairment.

Doxorubicin is an effective antineoplastic drug; however, its clinical benefit is limited by its cardiotoxicity. The inhibition of mitochondrial biogenesis is responsible for the pathogenesis of doxorubicin-induced cardiomyopathy. Endothelin-1 is a vasoconstrictive peptide produced from big endothelin-1 by endothelin-converting enzyme-1 (ECE-1) and a multifunctional peptide. Although plasma end...

متن کامل

Interplay of Phosphorylated Apoptosis Repressor with CARD, Casein Kinase-2 and Reactive Oxygen Species in Regulating Endothelin-1–Induced Cardiomyocyte Hypertrophy

Objective(s):  The role of the Apoptosis repressor with caspase recruitment domain (ARC) in apoptosis and in certain hypertrophic responses has been previously investigated, but its regulation of Endothelin-1 induced cardiac hypertrophy remains unknown. The present study discusses the inhibitory role of ARC against endothelin–induced hypertrophy. Results:In present study Endothelin treated car...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 122 1  شماره 

صفحات  -

تاریخ انتشار 2018